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synopsis 
It is the purpose of this research to investigate possible forms of elastic strain energy 

functions which reproduce the fundamental behavior of compressible, isotropic 6Ued 
elastomers aa observed in experiments. Three different forms of the strain energy func- 
tion are considered, although they can be classified into two essentially different classes: 
in the first case, the function is assumed to be the sum of the distortional and the volu- 
metric strain energy, while in the second it represents a possible modification of Mooney's 
strain energy function. For these three strain energy functions, the relations between 
axial and lateral deformations under uniaxial tension are plotted together with the result 
of experiments periormed on dumbbell-shaped specimens of a KC1-filled polyurethane. 
The relations in uniaxial tension and compression between the axial stress and deforma- 
tion are also plotted. 

I. INTRODUCTION 

The purpose of this research is to investigate possible forms of the elastic 
strain enerfg functions for compressible, isotropic fdled elastomers which 
can reproduce the fundamental behavior of the material as observed in 
experiments. 

Two esbientially different forms are assumed for the strain energy function 
W ,  which is a function of the three invariants I1, Iz, and 1 3  of the deforma- 
tion tensor and which is measured per unit volume of undeformed body, 
where 

I1 = x 1 2  + X 2 2  + X 3 2  

1 2  = XI2X2' + XZ2h3' + X 3 2 X 1 2  

I3 = X 1 2 X 2 2 X 3 2  (1) 

XI, X 2 ,  and 

W1 and the volumetric strain energy W2. 

being the three principal stretches of the deformation.' 
In the first case, W is assumed to be the sum of the distortional energy 

W(Ii11z113) = W1(Ii112) + Wz(13) (2) 
where W1 vanishes when the principal stretches of the deformation are 
identical, while W2 is zero when no volume change is observed during de- 
formation. 

* This work was supported by the Office of Naval Research under Contract No. 
Nonr266( 78). 
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In the second case, RiIooney’s strain energy function valid for incompres- 
sible material2 is modified to include the effect of the dilatational strain so 
that it becomes a function of all three invariants but reduces to Rlooney’s 
form [eq. (3) ] under volume constant infinitesimal deformation. 

W(I1,IZ) = (p/4)[(1 + U)(Il - 3) + (1 - u)(Iz - 3)l (3) 

where p is the shear modulus for infinitesimal deformation and a is the co- 
efficient of asymmetry introduced by Mooney. 

In both cases, such forms of the strain energy function are chosen that the 
condition 

(bW/dIl) + X2a(bW/blz) 2 0 (4) 
is satisfied, in addition to the well-known requirement that the strain 
energy function and the stresses are zero at zero deformation. Equation 
(4) is a necessary and sufficient condition for the greatest (smallest) tension 
to coincide with the direction of the greatest (smallest) stretch.’ The 
identity in eq. (4) is satisfied only when A, = A,, A,, A,, and X, being the 
three principal stretches. 

Moreover, the well-known identityS 

should be satisfied; here K is the bulk modulus in infinitesimal deformation, 

v = $131” = dV/dVo 

with dVo and dV being the volume element in the reference and the de- 
formed state, respectively, and W* the strain energy under pure dilatational 
deformation. Hence W* is a function of v only and obtained from W(I1) 
I 2 ,  I 3 ) ,  replacing Ill I$) and 1 3  by 3v2/’, 3v‘/’ and v2, respectively. 

Finally, it is important that .the selected strain energy function should 
reproduce the observed relations between the lateral contraction A2 and the 
longitudinal extension X1 of a cylindrical or prismatic bar under conditions 
of simple extension (A2 = A,) defined by 

51 = XlXl 

5 2  = X2XZ 

2 3  = X a - 8  (6) 

where x i  and X ,  (i = 1,2,3) denote, respectively, the spatial and material 
coordinates within the same rectangular Cartesian reference frame. The 
X1-X2 relations usually observed are such that Xz is a monotonically decreas- 
ing function of XI. 

It appears that there are several strain energy functions of the form of 
eq. (2) or of the modified form of eq. (3) which reproduce the Xl-X2 relations 
compatible with experimental results. In the following section, three 
different strain energy functions are derived on imposing certain additional 
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conditions. Methods of introducing the third invariant 1 3  into the strain 
energy function are suggested by the derivation of these three particular 
forms of the strain energy function. 

11. DERIVATION OF STRAIN ENERGY FUNCTIONS 

The general relations of the theory of finite deformation used in the 
subsequent analysis are found, for example, in the work by Eringen.' 

In curvilinear coordinate systems with metric tensors g for the spat,ial 
coordinates xi (i = 1,2,3) and G for the material coordinates X L  (L  = 
1,2,3), the covariant components ELM of the material strain tensor are, with 
the usual convention of summation over repeated indices, 

ELM = 1/2(gtjxi,Lxi,M - GLM) (7) 

The contravariant components TLM and tij of the material and the spatial 
stress tensor are, respectively, 

TLM = bW/bELM (8) 

where gij and GLM are the covariant components of g and G, respectively, 
and xi ,  = bxi/dXL. 

For the deformation described by eq. (6), eqs. (7-9) take the form 

1/2(h12 - 1 )  0 
1/2(Xz2 - 1 )  

0 

0 
d W /  bE22 

[ELM] = 

bW/bEn 
[TLM] = [ 0 

0 0 bWlbE33 

Strain Energy Functions of the Form of Eq. (2) with 
W413) = A(l - 1 3 - 7  - B(1 - z3-9 

The first strain energy function W discussed is of the form of eq. (2)  in 

(13) 

which 

WI(Il,I2) = CI,(1,2 - 312) 

and 
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Fig. 1. Potential energy + ( d )  and strain energy WZ* due to purely dilatational de- 
formation. 

W1(IllIz) according to eq. (13) represents the distortional energy which 
must be zero when the deformation is purely dilatational, for it can be 
shown that 

Ix2 - 312 = 1/2[(xi2 - x22)2 + (hz2 - kj2)' + (ha2 - (16) 
Since it can also be shown that 

( d w / w  + x2,(aw/dr2) = 3[x,4 + x72x,2 + x , 4 1 >  o (16) 
eq. (4) is also satisfied. 

WZ(13) in eq. (14) is assumed on the basis of Mie's equation4 of the form 
of eq. (17) representing the potential energy of one pair of interacting par- 
ticles as a function of their distance d: 

(17) 
The first term of the right-hand side of eq. (17) represents the potential 

of attraction, the second that of repulsion, where the integers n and m are 
such that n > nl for a possible equilibrium distance do. Summation over all 
molecular pairs gives a total "lattice energy" per mole of 

4(d) = -ad-" + bd-" 

9 = -A'd-" + B'd-" 

where A' and B' are constants proportional to Avogadro's number, but de- 
pending also on the molecular structure as well as on the values of m and n. 

When the deformation is purely dilatational, d3 and do3 may be assumed 
proportional to the deformed volume element dV and the undeformed 
volume element dVo, respectively. Therefore, the strain energy per unit 
volume of the undeformed body can be written in the following form: 

(174  

W2* = - A v - " / ~  + By-"I3 = -A13-" + B13-@ (17b) 

where LY = m/B and ,B = n/6. 
stants which are added, so that W2 = 0 when I ,  = 1.0. 

Hence, one has eq. (14) except for the con- 

Hence, the sttain energy function is 

w = c1i(Ii2 - 312) f A(1 - 1 3 - ( 1 )  - B(1 - Ia-@) (18) 
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Equations (17) and (17b) are schematically presented in Figures la and 
lb ,  respectively. The derivative of +(d) with respect to d gives the inter- 
acting force between particles. This force is also plotted in Figure 1 
(broken line), in which d‘ indicates a critical distance between two neighbor- 
ing particles beyond which irreversible separation of the particles will 
occur. This implies that the pure expansion is reversible only when I3 < 
(d’ /dd6. 

Substituting eq. (18) into eq. (12), one obtains 

t Z 2  = (X2/XiX3) [6C(X2211 - 1 2 )  + 2X12X32(ACu133-(1+a) - R@l3-(’+’))] (19) 

When the deformation is infinitesimal, 

lea[ = Ix, - 1 1  << 1 a = 1,2,3 (20) 

I1 ‘v 3 + 28 

I 2  ‘v 3 + 48 

1 3  ‘v 1 + 28 

and therefore, eq. (19) can be approximated by 

tZ2  ‘V 6C(6e2 - 28) - 4(Aa2 - B02)8 (21) 

where el, e2, and e3 are the principal extensions and 6 = el + e2 + e3. 
deriving eq. (21), it is assumed that 

In 

A a  - B@ = 0 

so that tZ2  = 0 when el = e2 = e3 = 8 = 0. 

(22) 

Since A a  and B/3 have the dimension of stress, one can set 

A a  = B@ = p/2k (224 

and obtain from eq. (21) 

t2+[([(2p/k)(B - a) - 12Cl6 + 36Ce2 (23) 

where I.( is the shear modulus of the material for infinitesimal deformation 
and k is a positive number which will be determined later. 

Equation (23) has to be identical with Hooke’s generalized law in the 
linearized theory of elasticity; 

tZ2=Xt9 + 2pe2 (24) 

where 

x = 2pv/(l - 2,) 

Comparison of eq. (23) with eq. (24) provides the relations 

I: = p/18 

k = 3(1 - 28)@ - a)/(l + 8) 
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Equations (25) express C and k in terms of the shear modulus p, Poisson’s 
ratio v for infinitesimal deformations, as well as a( = m/6)  and p( = n/6), 
which are also material constants. 

W = (p/l8)I1(11~ - 312) + (p/2ka)(1 

associated with eq. (26) 

From eqs. (18,2223, and 25)’ one obtains 

- (p/2kj3)(1 -13-B) (26) 

Making use of the second of eqs. (25), one can easily show that W*(v) 

W*(v) = (p/2ka)(l - 2)-2p) - (p/2k/3)(1 - v-26) (27) 
satisfies eq. (5). 

Strain Energy Function of the Form of Eq. (2) Producing a Relation A2 = 
X1-’ under Uniasal Tension and Compression 

A strain energy function which, under uniaxial deformation described 
by eq. (6) with XZ = AS, produces a XI+ relation of the form 

X Z  = XI- ’  (Y  > 0)  (28) 

(28a) 

or 

(1 + e2) = (1 + el)-’ 

is derived because of extensive use of eq. (28) in previous w0rk.V 
Equation (28a) tends towards 

e2 = - yel (28b) 
Hence Y denotes Poisson’s ratio for sniall 

With reference to eq. (28), v can thus be considered as a general- 
for small values of el and e2. 

strain. 
ized Poisson ratio for logarithmic definition of strain 

y = -  (In Wln A d  (2W 
as suggested by Smith.6 

W1(Il, 12) according to eq. (13) : 
The strain energy function is assumed to be of the form of eq. (2) with 

w = - 312) + w2 ( 1 3 )  (29) 

(30) 

WZ(I3) in the last equation is determined from the condition 

T22 = dW/dEn = 0 

for uniaxial tension or compression. 
From eqs. (29) and (30)’ one obtains 

dWz/dIi = - 3C[(h22/k12)-1] 

If XI = X2-’, then 
13 = x12x24 = x12(1-2,) 

= ~ 3 1 / ~ 2 ( l - 2 v ) l  
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and 

Hence, eq. (31) has a solution h2= X1-”if W2 satisfies theequation 
dW2/dI3 = - 3c[13-(1+4/(1-2i) - 11 (32) 

Upon integration, 

Wz(13) = 3C{13 + [(l - 2 ~ ) / 3 ~ ] 1 3 - ~ ~ / ( ~ - ~ ~ )  - [(l 4- v ) / ~ v ] )  (33) 

where a constant has been added so that w2(13) = 0 for 1 3  = 1.0. 
This method of deterniining WZ(13) is essentially due to Blatz and K o , ~  

who introduced eq. (28) for the 1 1 4 2  relation following Smith’s generaliza- 
tion of V. 

Similar to eq. (19)’ 

tZ2 = (X2/X1X3)[6C(X2211 - 1 2 )  + 6CX12X32(1 - 13-(1+”)/(1-2”) 11 (34) 

tZ2= 36Cez + 36C[v/(l - 2 ~ ) ] 9  (35) 

For infinitesimal deformation 

which reduces to eq. (24) when 

C = p/18  

Hence, 

It is easy to see that W in eq. (37) satisfies eqs. (4) and (5) and that it 
does not possess a term representing the volunie change in the form of eq. 
(17b) ; under pure dilatational deformation, it increases without limit as 
illustrated by the dashed curve in Figure lb. 

A Possible Modification of the Mooney Strain Energy Function 

The Mooney strain energy function [eq. (3)] is modified by writing it 
in the form 

W = -c1(11-i13-a’ - 3-l) + c2(1213-” - 3) (38) 

so that it satisfies eq. (4) and takes the form of eq. (17b) for purely volu- 
metric deformation with 11 = 3v2/’ and 1 2  = 3v4/’. 

1) (39) 2(u’+ ’ / r )  - 1) + 3 c  ( -2(8’-*/s) - w* = - (c1/3) (V- 2 2 )  

In eq. (39) an inequality a = m/6 = a’ + 1/3 < p = n/6 = p’ - 2/3 
has to be satisfied in order that W* attains a minimum value for equilibrium 
conditions. 

Similar to eqs. (19) and (34), 

t22 = (X,/XlX3) [2c111-213-“’ + 2CZ(X12 + X32) 13-8 ’  

+ 2X1’kZ2 (a’Cd1-113-u’-1 - P‘c21213”’-’ 11 (40) 
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which, for infinitesimal deformations, can be approximated by 

f 2 2  - - " /y ( l  + 3a')C1 + 2('2 - .3p')Cs 

+ [- '/y C1(3OL" + Y a '  + '/$) + 4c"r(8b" - 48' + 1)]6 

+ [- '/3 a'c~ - 4c2(1 - 3j3')l ez (41) 

which has to be identical with eq. (24). Hence 

'/y(l + 3a')Cl f (2 - 3p')cz = 0 (42) 

= p v/(1 - 2v) (43) 

(44) 

(45) 

- 2/9(3a'2 + 2a' + 2/3)C1 + 2(3/3'2 - 48' + 1)Cz 

- "3 a'C1 - 2C2(1 - 38') = p 

CJp = 9(38' - 2)/(6a' + 6p' - 2) 

From eqs. ( 4 2 4 4  , one obtains 

C z / p  = (3a' + 1)/(6a' + 68' - 2) (46) 

and 

3(3a' + 1)B'2 - 3 [ 3 ~ ~ ' ~  + 6a' + 2 + ~ / ( 1  - ZY)]~ '  

+ ( 6 ~ 2 ' ~  + [7 - 3v/(l - 2v)la' + '/3 + v/(l - 2v)] = 0 (47) 
From eqs. (45) and (46), two constants C1 and C2 can be determined in 

terms of the material constants p ,  a', and 8'. Equation (47) gives a re- 
lation between a', p', and Poisson ratio v. 

With the aid of eqs. (4244), it can be shown that W* in eq. (39) satis- 
fieseq. (5). 

The strain energy function of the form of eq. (38) with C1 and C2 given 
in eqs. (45) and (46) reduces to the following equation under (volume con- 
stant) infinitesimal deformation: 

W = (p/4)[(1 + ~ ) 9 ' 2  + 2 (1 - a)8zI (48) 

which can also be obtained from eq. (3), under the same condition where 

& = el2 + eZ2 + e32 

7%' = 8 2  - (e,e, + e2e3 + e3e1) 

and 

a = (8' - a' - l)/(a'  + p: - 1/3) > 0 (49) 

If the material is intrinsically incompressible, there is no physical niean- 
ing for a' and fl' as discussed before. 

III. SIMPLE DEFORMATION AND EXPERIMENTAL RESULTS 
For the three strain energy functions derived in the foregoing section, 

the relations between the axial stress 1" and X1 as well as XI and Xz are con- 
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sidered. The X1-Xz relations obtained from the energy functions are com- 
pared with the result of uniaxial tension tests performed on a dumbbell- 
shaped specimen of a KC1-filled polyurethane (see Appendix). 

The Strain Energy Function, Eq. (26) 

For uniaxial tension and compression, Xz = X1 and the lateral stress 
Hence, from eq. (19) with C, k, Aa, and BP given by eqs. (25) tzz = 0. 

and (22a), one obtains the XI+ relat,ion: 

[(i - 2 ~ ) @  - a)/(1 + ~ 1 2 ~  x ~ + ~ ~ ( x ~ ~  - XP) 
+ ~ 1 2 ( @ - a ) ~ ~ 4 ( @ - ~ )  - 1 = 0 (50) 

-XI 

Pig. 2. Relations between axial and lateral stretches, and A*, under uniaxial tension 
and compression for the strain energy functions given by eqs. (26), (37), and (38) with 
Poisson ratio v = l/3. 

For the following nunierical examples, it is assuiiied that a = 1 and 
p = 2 ( n ~  = 6 and n = 12) ; these are typical values for molecular bonds. 

hi Figure 2, the XI-& relalion is plotted as curve I in the region hl = 0 
to 2.0 for v = 1/3; in Figure 3, where the experiuiental results performed 
on dumbbell-shaped specimens are also shown, the XI-Xt relat,ioii is plotted 
in the region X1 = 1.0-1.2 for various values of v. 

For simple tension and compression, the physical component of stress 
uI1 is identical with t l1  = X1X2-2bW/bE11, and for the strain energy function 
eq. (2f.3, 
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-A,- 

Fig. 3. Relations between axial and lateral stretches, XI and XZ, under uniaxial tension 
for the strain energy functions given by eqs. (26) and (37) with various values of Poisson 
ratio, and the result of experiment. 

Using X1 and Xz which satisfy eq. (50), one can obtain ull as a function of 
XI from eq. (51). In particular, ull for Y = 1/3 is shown by curve I in 
Figure 4. 

The sharp drop in 611 in Figure 4 as X1 reaches approximately 1.4 may 
be due to the fact that the strain energy function cannot be valid when the 
critical separation distance d' between neighboring particles is attained; 
the irreversible separation occurs when X1 reaches approximately 1.4 under 
simple tension with v = 1/3, a = 1, and j3 = 2. Hence, in Figure 2, curve 
I is also not valid beyond A1 = 1.4. 

When the material is incompressible, ull is given' by 

u11 = 2(X12 - X,-l)(i3W/d11 + Xr-1 dW/b12) (52) 

When the first term of eq. (26) is considered as the strain energy function 
for incompressible media, 

~d1.1 = 1/3 (X12 - X,-~)(XI~ + X1 + X1-2) (53) 

and this is plotted as curve I1 in Figure 4. 

tion [eq. (3)] 
For comparison, the al1-Xl relation for the Mooney strain energy func- 

(54) UllII.1 = 1/2 (A12 - X1-1)[1 + a + (1 - a)A1-'] 
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5 

Fig. 4. Relations between axial stress and stretch, ull and XI, under uniaxial tension 
and compression for the strain energy functions given by eqs. (26) and (37). 

with the coefficient of asymmetry a = 0.233, a value for a tread stock2 is 
also shown by curve I11 in Figure 4. It should be noted, however, that 
the Mooney function is more flexible than the first term of eq. (26) in the 
sense that it has two parameters p and a to adjust to experimental results. 

The Strain Energy Function, Eq. (37) 
In  this case, the Xl-X2 relation under simple tension and compression is 

given by eq. (28), which is plotted for v = 1/3 in Figure 2 (curve 11). The 
same relation is also plotted in Figure 3 for v = 0.25, 0.333, 0.4, and 0.5. 

With the aid of eq. (28), the uniaxial stress UII = t ’ l  = AIXZ-~ bW/dE11 
for this strain energy function becomes 

1 (f55) u1dp = ‘/a A1 5 + 2 v ( l  - X,-W+P) 

and the relation for v = 1/3 is shown by curve IV in Figure 4. 
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It is interesting to note that the strain energy functions given by eqs. 
(26) and (37) produce practically identical values ul1 in the range of XI 
where the strain energy eq. (26) is valid. 

This strain energy function evidently reduces to the same forni as eq. 
(26) does for incompressible media. 

The Strain Energy Function Eq. (38), with Cl and Cz given by Eqs. (45) 
and (46) 

In the same way as eq. (50) is derived, it can be shown that the XI-Xz 
relation under simple tension or compression for the strain energy function 
eq. (38) is 

( ~ 1 / p )  ( ~ 1 2 ~ 2 ~ ) ~ ’ - ~ ’ [ ~ 2 ~  + a’(x12 + 2 ~ )  I+ ( c z / p ) ~ z * ( ~ 1 2  + 2 ~ 2 2 ) ~  

X [Xi2 + 1 2 ’  - o’(2Xi2 + Xz2)] = 0 (56) 

and the uniaxial stress ~ 1 1  is 

U l d P  = (2X1/XZ2) { ( C 1 / p ) ( W  + 2 x 2  2 -2 ( x12x24)  -a’ + 2 ( C 2 / p ) ~ 2 2 ( ~ 1 2 ~ 2 4 )  -8’ 

+ X~~[(Y’(C~/~) (x12 + 2x22) - 1 ( ~ ~ 2 ~ 2 ~ ) - ~ ’ - ’  

- P ’ ( c z / ~ )  ( 2 ~ ~ 2 x 2 2  + xz4) (~12x2‘)  -@’-l] ] (57) 

where Cl/p and Cz/p are given in eqs. (45) and (46). 
In the following examples, it is assumed that a’ = 1/3; hence a = 1 

andm = 6. 
The Xl-X2 relation for a’ = 2/3, p‘ = 0.237, and v =  1/3 is plotted as 

curve I11 in Figure 2, while the same relation is plotted in Figure 5 for 
various values of v together with the experimental results. 

Fig. 5. Relations between axial and lateral stretches, A, and Xz, under uniaxial tension 
for the strain energy function given by eq. (38) with various values of Poisson ratio, 
and the result of experiment. 
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Fig. 6. Relations between axial stress and stretch, ull and XI, under uniaxial tension 
and compression for the strain energy function given by eq. (38). 

The ull-X1 relation for the same set of parameter values is obtained from 
eq. (57) by using X1 and Xz satisfying eq. (56) and shown as curve I in 
Figure 6. 

Figure 6 seems to indicate that, under simple tension the critical distance 
d' between two neighboring particles is attained when A1 reaches approxi- 
mately 1.4 while under simple compression the similar phenomenon is ex- 
pected between two neighboring particles probably in the lateral direction 
when A1 reaches approximately 0.7, albhough this is not observed for the 
inaterial with the strain energy function eq. (26). 

For incompressible media, eq. (38) reduces to 

w = - c 1 (I 1. -1 - 3-1 ) + CZ(b - 3) (58) 

un/p = '/z (A12 - X,-1)[9(1 + a)(X12 + 2x1-9-2 + (1 - u)X1-'] (59) 

From eqs. (52) and (58), 

Equation (59) produces the al1--Xl relation under the condition of in- 
compressibility which is plotted for a = 0.233 as curve I1 in Figure 6, 
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where the same relation based on the nlooney furictioii is also shown as 
curve 111. 

APPENDIX 

Tests on Dumbbell-Shaped Specimens 

Uniaxial tension tests to failure were performed on the specimen type 
shown in Figure 7 with an Instron universal testing machine working at a 
crosshead rate of 0.05 in./niin. Longitudinal extension ratio and mid- 
specimen diameter were measured by means of the illustrated transducers. 
The results of five tests are presented in Figures 3 and 5 .  

Fig. 7. Test specimen. 

The data show considerable scatter. However, taking the average re- 
sporise as a reasonable trend, a ratio of v = 0.334.40 seems justified for 
the “instantaneous” values of the generalized Poisson ratio. The scatter 
of the data is due to the diameter reading being taken at one point only. 

Tlie authors are greatly obliged to Dr. l4, Leiioe, who performed the experiments re- 
ported in the Appendix. 
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RQsumQ 
Le but de cette recherche est d’6tudier les formes possibles des fonctions d’bnergie de 

la deformation Blastique, qui reprodiiisent le comportement general des klastombres 
compressibles, isotopiques charges tel que le montre l’exphience. On considere trois 
formes differentes de fonction d’6nergie 6lastique de dt5formation, bien qu’elles puissent 
&re classifiees en deiix categories essentiellement differentes: dans le premier cas, la 
fonction est suppos6 &re la somnie de l’bnergie de dbformation et  de volume, tandis 
que dans le second cas elle repr6sente line modification possible de la fonction d’knergie 
de deformation de Mooney. Pour ces trois fonctions d’6nergie de dbformation, on 
compare les relations entre les deformations axiales e t  latkrales en extension uniaxiale 
avec le resultat des essais realis& sur des Bchantillons de polyurethann charges avec 
du KCl experimental. On rapporte dgalement des courbes expdrimentales donnant 
la relation entre la tension et la deformation pour l’extension uniaxiale et la compression. 

Zusammenfassung 
In der vorliegenden Arbeit sollen die moglichen Formen der elastischen Verformungs- 

energiefunktionen untersucht werden, welche daa grundsatzliche, experimentell 
beobachtbare Verhalten kompressibler, isotrop gefullter Elastomerer wiedergeben. Es 
werden drei verschiedene Formen der Verformungsenergiefunktion in Betracht gezogen ; 
die jedoch in zwei, wesentlich verschiedene Klassen eingeteilt werden konnen: im 
ersten Fall wird angenommen, dass die Funktion die Summe von Distortions- und 
Volumsverformungsenergie ist, wahrend sie im zweiten eine mogliche Modifizierung 
der Verformungsenergiefunktion von Mooney darstellt. Fur diese drei Verformungs- 
energiefuriktiorien wird die Beziehong zwischen axialer und seitlicher Verformung bei 
nniaxialer Sparinung zusammen mit dem Ergebnis von Versuchen an hantelformigen 
Proben eines KC1-gefullteri Polyurethans graphisch dargestellt. Ebenso wird die 
Beziehung zwischen axialer Spanniing und Deformation bei uniaxialer Dehnung und 
Kompression graphisch dargestellt. 
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